The current passing through the battery in the given circuit, is:
A bob of heavy mass \(m\) is suspended by a light string of length \(l\). The bob is given a horizontal velocity \(v_0\) as shown in figure. If the string gets slack at some point P making an angle \( \theta \) from the horizontal, the ratio of the speed \(v\) of the bob at point P to its initial speed \(v_0\) is :
A full wave rectifier circuit with diodes (\(D_1\)) and (\(D_2\)) is shown in the figure. If input supply voltage \(V_{in} = 220 \sin(100 \pi t)\) volt, then at \(t = 15\) msec:
Biot-Savart’s law is an equation that gives the magnetic field produced due to a current-carrying segment. This segment is taken as a vector quantity known as the current element. In other words, Biot-Savart Law states that if a current carrying conductor of length dl produces a magnetic field dB, the force on another similar current-carrying conductor depends upon the size, orientation and length of the first current carrying element.
The equation of Biot-Savart law is given by,
\(dB = \frac{\mu_0}{4\pi} \frac{Idl sin \theta}{r^2}\)
For detailed derivation on Biot Savart Law, read more.