We are given two rotating bodies, A and B, and we are to compare their angular velocities and angular momenta. Let's go step by step through the calculations:
The kinetic energy of a rotating body is given by the formula:
\(K.E = \frac{1}{2} I \omega^2\)
For bodies A and B, the kinetic energy is equal, so we have:
\(K.E_A = K.E_B\)
This leads to:
\(\frac{1}{2} I_A \omega_A^2 = \frac{1}{2} I_B \omega_B^2\)
Canceling out the common factors of \( \frac{1}{2} \), we get:
\(I_A \omega_A^2 = I_B \omega_B^2\)
Rearranging for the ratio of angular velocities:
\(\frac{\omega_A}{\omega_B} = \sqrt{\frac{I_B}{I_A}} \) .....(\)
The angular momentum \( L \) of a rotating body is given by:
\(L = I \omega\)
Thus, for bodies A and B, the angular momenta are:
\(L_A = I_A \omega_A\)
\(L_B = I_B \omega_B\)
The ratio of angular momenta is:
\(\frac{L_A}{L_B} = \frac{I_A}{I_B} \times \frac{\omega_A}{\omega_B}\)
Substitute equation (i) for \( \frac{\omega_A}{\omega_B} \):
\(\frac{L_A}{L_B} = \frac{I_A}{I_B} \times \sqrt{\frac{I_B}{I_A}}\)
Simplify the expression:
\(\frac{L_A}{L_B} = \sqrt{\frac{I_A}{I_B}}\)
Since \( \frac{I_A}{I_B} < 1 \) (because \( I_A < I_B \)), we conclude:
\(L_A < L_B\)
Therefore, the angular momentum of body A is less than that of body B:
Conclusion: \( L_A < L_B \)
Given:
- Masses: $m_A = m$, $m_B = 2m$
- Moments of inertia: $I_A$, $I_B$ with $I_B > I_A$
- Rotational kinetic energies are equal: $E_A = E_B$
Rotational Kinetic Energy:
\(E = \frac{1}{2} I \omega^2\)
Since $E_A = E_B$, we equate energies:
\(\frac{1}{2} I_A \omega_A^2 = \frac{1}{2} I_B \omega_B^2 \Rightarrow I_A \omega_A^2 = I_B \omega_B^2\)
Step 1: Express angular momenta
\(L_A = I_A \omega_A,\quad L_B = I_B \omega_B\)
From the energy equality, rearranged:
\(\omega_A^2 = \frac{I_B}{I_A} \omega_B^2 \Rightarrow \omega_A = \sqrt{\frac{I_B}{I_A}} \omega_B\)
Substituting into $L_A$:
\(L_A = I_A \cdot \sqrt{\frac{I_B}{I_A}} \omega_B = \sqrt{I_A I_B} \omega_B\)
\(L_B = I_B \omega_B\)
Now compare $L_A$ and $L_B$:
\(\frac{L_A}{L_B} = \frac{\sqrt{I_A I_B} \omega_B}{I_B \omega_B} = \sqrt{\frac{I_A}{I_B}} < 1 \Rightarrow L_A < L_B\)
Final Answer:
\(\boxed{L_B > L_A}\)
In a Vernier caliper, \(N+1\) divisions of vernier scale coincide with \(N\) divisions of main scale. If 1 MSD represents 0.1 mm, the vernier constant (in cm) is: