When two resistors are connected in parallel, their equivalent resistance \( R_{\text{eq}} \) can be calculated using the formula:
$$ \frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} $$
Here, \( R_1 = 0.4 \, \Omega \) and \( R_2 = 0.6 \, \Omega \).
Substituting the values:
$$ \frac{1}{R_{\text{eq}}} = \frac{1}{0.4} + \frac{1}{0.6} $$
Calculating each term gives:
$$ \frac{1}{0.4} = 2.5 $$
$$ \frac{1}{0.6} = 1.6667 $$
Adding these results:
$$ \frac{1}{R_{\text{eq}}} = 2.5 + 1.6667 = 4.1667 $$
Taking the reciprocal to find \( R_{\text{eq}} \):
$$ R_{\text{eq}} = \frac{1}{4.1667} $$
Therefore, the equivalent resistance is:
$$ R_{\text{eq}} \approx 0.24 \, \Omega $$
Thus, the correct answer is \( R_{\text{eq}} = 0.24 \, \Omega \).
Given: Two resistors in parallel, \( R_1 = 0.4\, \Omega \), \( R_2 = 0.6\, \Omega \)
The formula for equivalent resistance \( R \) in a parallel combination is:
\[ \frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{0.4} + \frac{1}{0.6} \]
\[ \frac{1}{R} = \frac{5}{2} + \frac{5}{3} = \frac{15 + 10}{6} = \frac{25}{6} \Rightarrow R = \frac{6}{25} = 0.24\, \Omega \]
Final Answer: 0·24 Ω