Question:

Two point charges \( q_1 = 16 \, \mu C \) and \( q_2 = 1 \, \mu C \) are placed at points \( \vec{r}_1 = (3 \, \text{m}) \hat{i}\) and \( \vec{r}_2 = (4 \, \text{m}) \hat{j} \). Find the net electric field \( \vec{E} \) at point \( \vec{r} = (3 \, \text{m}) \hat{i} + (4 \, \text{m}) \hat{j} \).

Show Hint

When calculating the net electric field from multiple charges, calculate the electric field due to each charge separately and then combine the results vectorially, taking care of the direction.
Updated On: Jun 20, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Net Electric Field at a Point Due to Two Point Charges 

We are given two point charges and need to find the net electric field at a point \( \vec{r} = 3 \hat{i} + 4 \hat{j} \) due to the two charges.

The electric field due to a point charge is given by Coulomb's law:

\[ \vec{E} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{q}{r^2} \hat{r} \]

where:

  • \( q \) is the charge,
  • \( r \) is the distance from the charge to the point of interest,
  • \( \hat{r} \) is the unit vector pointing from the charge to the point,
  • \( \varepsilon_0 \) is the permittivity of free space \( \varepsilon_0 = 8.85 \times 10^{-12} \, \text{C}^2/\text{N} \cdot \text{m}^2 \).

Electric Field Due to \( q_1 \) at Point \( \vec{r} \):

First, calculate the distance \( r_1 \) between \( q_1 \) and point \( \vec{r} \). Since \( q_1 \) is at \( (3, 0) \) and point \( \vec{r} \) is at \( (3, 4) \):

\[ r_1 = \sqrt{(3 - 3)^2 + (4 - 0)^2} = \sqrt{16} = 4 \, \text{m} \]

Next, find the unit vector \( \hat{r_1} \):

\[ \hat{r_1} = \frac{\vec{r} - \vec{r_1}}{r_1} = \frac{(3 \hat{i} + 4 \hat{j}) - (3 \hat{i})}{4} = \hat{j} \]

Now, using Coulomb's law for \( q_1 \):

\[ \vec{E_1} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{q_1}{r_1^2} \hat{r_1} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{16 \times 10^{-6}}{(4)^2} \hat{j} = \frac{16 \times 10^{-6}}{16 \pi \varepsilon_0} \hat{j} \]

Electric Field Due to \( q_2 \) at Point \( \vec{r} \):

Similarly, calculate the distance \( r_2 \) between \( q_2 \) and point \( \vec{r} \):

\[ r_2 = \sqrt{(3 - 0)^2 + (4 - 4)^2} = \sqrt{9} = 3 \, \text{m} \]

Find the unit vector \( \hat{r_2} \):

\[ \hat{r_2} = \frac{\vec{r} - \vec{r_2}}{r_2} = \frac{(3 \hat{i} + 4 \hat{j}) - (0 \hat{i} + 4 \hat{j})}{3} = \frac{3 \hat{i}}{3} = \hat{i} \]

Now, using Coulomb's law for \( q_2 \):

\[ \vec{E_2} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{q_2}{r_2^2} \hat{r_2} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{1 \times 10^{-6}}{(3)^2} \hat{i} = \frac{1 \times 10^{-6}}{9 \pi \varepsilon_0} \hat{i} \]

Net Electric Field at Point \( \vec{r} \):

The total electric field \( \vec{E} \) at point \( \vec{r} \) is the vector sum of \( \vec{E_1} \) and \( \vec{E_2} \):

\[ \vec{E} = \vec{E_1} + \vec{E_2} = \frac{16 \times 10^{-6}}{16 \pi \varepsilon_0} \hat{j} + \frac{1 \times 10^{-6}}{9 \pi \varepsilon_0} \hat{i} \]

Thus, the net electric field at point \( \vec{r} \) is:

\[ \vec{E} = \frac{1 \times 10^{-6}}{9 \pi \varepsilon_0} \hat{i} + \frac{16 \times 10^{-6}}{16 \pi \varepsilon_0} \hat{j} \]

Was this answer helpful?
0
0