We are given two point charges and need to find the net electric field at a point \( \vec{r} = 3 \hat{i} + 4 \hat{j} \) due to the two charges.
The electric field due to a point charge is given by Coulomb's law:
\[ \vec{E} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{q}{r^2} \hat{r} \]
where:
First, calculate the distance \( r_1 \) between \( q_1 \) and point \( \vec{r} \). Since \( q_1 \) is at \( (3, 0) \) and point \( \vec{r} \) is at \( (3, 4) \):
\[ r_1 = \sqrt{(3 - 3)^2 + (4 - 0)^2} = \sqrt{16} = 4 \, \text{m} \]
Next, find the unit vector \( \hat{r_1} \):
\[ \hat{r_1} = \frac{\vec{r} - \vec{r_1}}{r_1} = \frac{(3 \hat{i} + 4 \hat{j}) - (3 \hat{i})}{4} = \hat{j} \]
Now, using Coulomb's law for \( q_1 \):
\[ \vec{E_1} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{q_1}{r_1^2} \hat{r_1} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{16 \times 10^{-6}}{(4)^2} \hat{j} = \frac{16 \times 10^{-6}}{16 \pi \varepsilon_0} \hat{j} \]
Similarly, calculate the distance \( r_2 \) between \( q_2 \) and point \( \vec{r} \):
\[ r_2 = \sqrt{(3 - 0)^2 + (4 - 4)^2} = \sqrt{9} = 3 \, \text{m} \]
Find the unit vector \( \hat{r_2} \):
\[ \hat{r_2} = \frac{\vec{r} - \vec{r_2}}{r_2} = \frac{(3 \hat{i} + 4 \hat{j}) - (0 \hat{i} + 4 \hat{j})}{3} = \frac{3 \hat{i}}{3} = \hat{i} \]
Now, using Coulomb's law for \( q_2 \):
\[ \vec{E_2} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{q_2}{r_2^2} \hat{r_2} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{1 \times 10^{-6}}{(3)^2} \hat{i} = \frac{1 \times 10^{-6}}{9 \pi \varepsilon_0} \hat{i} \]
The total electric field \( \vec{E} \) at point \( \vec{r} \) is the vector sum of \( \vec{E_1} \) and \( \vec{E_2} \):
\[ \vec{E} = \vec{E_1} + \vec{E_2} = \frac{16 \times 10^{-6}}{16 \pi \varepsilon_0} \hat{j} + \frac{1 \times 10^{-6}}{9 \pi \varepsilon_0} \hat{i} \]
Thus, the net electric field at point \( \vec{r} \) is:
\[ \vec{E} = \frac{1 \times 10^{-6}}{9 \pi \varepsilon_0} \hat{i} + \frac{16 \times 10^{-6}}{16 \pi \varepsilon_0} \hat{j} \]
Obtain an expression for the electric field \( \vec{E} \) due to a dipole of dipole moment \( \vec{p} \) at a point on its equatorial plane and specify its direction.
Hence, find the value of electric field: