Two passive two-port networks \( P \) and \( Q \) are connected as shown in the figure. The impedance matrix of network \( P \) is \( Z_P = \begin{bmatrix} 40 \, \Omega & 60 \, \Omega \\ 80 \, \Omega & 100 \, \Omega \end{bmatrix} \). The admittance matrix of network \( Q \) is \( Y_Q = \begin{bmatrix} 5 \, S & -2.5 \, S \\ -2.5 \, S & 1 \, S \end{bmatrix} \). Let the ABCD matrix of the two-port network \( R \) in the figure be \( \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \). The value of \( \beta \) in \( \Omega \) is ______ (rounded off to 2 decimal places).
Step 1: Analyze the network connection
For cascaded two-port networks, the overall ABCD parameters are obtained by multiplying the ABCD matrices of the individual networks.
Given:
Z-parameter matrix of network P:
\[ Z_P = \begin{bmatrix} 40 & 60 \\ 80 & 100 \end{bmatrix} \; \Omega \]
Admittance matrix of network Q:
\[ Y_Q = \begin{bmatrix} 5s & -2.5s \\ -2.5s & 1s \end{bmatrix} \]
Step 2: Convert Z-parameters of P to ABCD parameters
Standard Z-parameter equations:
\[ V_1 = Z_{11}I_1 + Z_{12}I_2 \] \[ V_2 = Z_{21}I_1 + Z_{22}I_2 \]
Substituting values:
\[ V_1 = 40I_1 + 60I_2 \quad (i) \] \[ V_2 = 80I_1 + 100I_2 \quad (ii) \]
From (ii):
\[ I_1 = \frac{V_2}{80} - \frac{100}{80}I_2 \]
Substitute in (i):
\[ V_1 = 40\left(\frac{V_2}{80} - \frac{100}{80}I_2\right) + 60I_2 \] \[ V_1 = \frac{V_2}{2} + 10I_2 \]
Comparing with standard ABCD equations:
\[ V_1 = AV_2 - BI_2,\quad I_1 = CV_2 - DI_2 \]
ABCD matrix of P:
\[ \begin{bmatrix} A & B \\ C & D \end{bmatrix}_P = \begin{bmatrix} \frac{1}{2} & -10 \\ \frac{1}{80} & \frac{100}{80} \end{bmatrix} \]
Step 3: Convert Y-parameters of Q to ABCD parameters
Standard Y-parameter equations:
\[ I_1 = Y_{11}V_1 + Y_{12}V_2 \] \[ I_2 = Y_{21}V_1 + Y_{22}V_2 \]
Substituting values:
\[ I_1 = 5V_1 - 2.5V_2 \quad (v) \] \[ I_2 = -2.5V_1 + V_2 \quad (vi) \]
From (vi):
\[ V_1 = \frac{V_2}{2.5} - \frac{I_2}{2.5} \]
Substitute into (v):
\[ I_1 = 5\left(\frac{V_2}{2.5} - \frac{I_2}{2.5}\right) - 2.5V_2 \] \[ I_1 = -\frac{1}{2}V_2 - 2I_2 \]
Thus, ABCD matrix of Q:
\[ \begin{bmatrix} A & B \\ C & D \end{bmatrix}_Q = \begin{bmatrix} \frac{2}{5} & \frac{2}{5} \\ -\frac{1}{2} & 2 \end{bmatrix} \]
Step 4: Find ABCD parameters of cascaded network R
\[ \begin{bmatrix} A & B \\ C & D \end{bmatrix}_R = \begin{bmatrix} A & B \\ C & D \end{bmatrix}_P \begin{bmatrix} A & B \\ C & D \end{bmatrix}_Q \]
\[ = \begin{bmatrix} \frac{1}{2} & -10 \\ \frac{1}{80} & \frac{10}{8} \end{bmatrix} \begin{bmatrix} \frac{2}{5} & \frac{2}{5} \\ -\frac{1}{2} & 2 \end{bmatrix} \]
\[ = \begin{bmatrix} 5.2 & -19.8 \\ 0.005 & -2.495 \end{bmatrix} \]
Step 5: Final ABCD parameters
\[ \alpha = 5.2,\quad \beta = -19.9~\Omega,\quad \gamma = 0.005,\quad \delta = 2.49 \]
A continuous time periodic signal \( x(t) \) is given by: \[ x(t) = 1 + 2\cos(2\pi t) + 2\cos(4\pi t) + 2\cos(6\pi t) \] If \( T \) is the period of \( x(t) \), then evaluate: \[ \frac{1}{T} \int_0^T |x(t)|^2 \, dt \quad {(round off to the nearest integer).} \]
The maximum percentage error in the equivalent resistance of two parallel connected resistors of 100 \( \Omega \) and 900 \( \Omega \), with each having a maximum 5% error, is: \[ {(round off to nearest integer value).} \]
Consider a distribution feeder, with \( R/X \) ratio of 5. At the receiving end, a 350 kVA load is connected. The maximum voltage drop will occur from the sending end to the receiving end, when the power factor of the load is: \[ {(round off to three decimal places).} \]
In the circuit with ideal devices, the power MOSFET is operated with a duty cycle of 0.4 in a switching cycle with \( I = 10 \, {A} \) and \( V = 15 \, {V} \). The power delivered by the current source, in W, is: \[ {(round off to the nearest integer).} \] 
The induced emf in a 3.3 kV, 4-pole, 3-phase star-connected synchronous motor is considered to be equal and in phase with the terminal voltage under no-load condition. On application of a mechanical load, the induced emf phasor is deflected by an angle of \( 2^\circ \) mechanical with respect to the terminal voltage phasor. If the synchronous reactance is \( 2 \, \Omega \), and stator resistance is negligible, then the motor armature current magnitude, in amperes, during loaded condition is closest to: \[ {(round off to two decimal places).} \]