Step 1: Use the formula for maximum height
\[
H = \frac{u^2 \sin^2\theta}{2g}
\]
For the first particle:
\[
H_1 = \frac{u^2 \sin^2 \theta}{2g}
\]
For the second particle (projected at \( 90^\circ - \theta \)):
\[
H_2 = \frac{u^2 \sin^2(90^\circ - \theta)}{2g} = \frac{u^2 \cos^2 \theta}{2g}
\]
Step 2: Use the given height difference
\[
H_2 - H_1 = 15
\Rightarrow \frac{u^2}{2g}(\cos^2 \theta - \sin^2 \theta) = 15
\]
Use the identity:
\[
\cos^2 \theta - \sin^2 \theta = \cos(2\theta)
\]
\[
\Rightarrow \frac{u^2}{2g} \cos(2\theta) = 15
\]
Substitute \( u = 25 \ \text{m/s}, \ g = 10 \ \text{m/s}^2 \):
\[
\frac{625}{20} \cos(2\theta) = 15
\Rightarrow 31.25 \cos(2\theta) = 15
\Rightarrow \cos(2\theta) = \frac{15}{31.25} = 0.48
\]
Step 3: Solve for \( \theta \)
\[
2\theta = \cos^{-1}(0.48) \approx 61.4^\circ
\Rightarrow \theta \approx \frac{61.4^\circ}{2} \approx 30.7^\circ
\]
\[
\boxed{\theta \approx 30^\circ}
\]