Step 1: Conservation of momentum.
In a completely inelastic collision, momentum is conserved: \[ \vec{p}_{\text{initial}} = \vec{p}_{\text{final}} \] Final momentum \(= (m + 2m) \cdot \frac{v}{3} = m v\).
Step 2: Initial momentum components.
Magnitude of resultant momentum before collision: \[ |\vec{p}_i| = \sqrt{(mv)^2 + (2m \cdot \frac{v}{2})^2 + 2(mv)(mv)\cos\theta} \] Simplify: \[ m v = m v \sqrt{1 + 1 + 2\cos\theta} \Rightarrow 1 = \sqrt{2(1 + \cos\theta)} \] \[ \Rightarrow 1 = \sqrt{4\cos^2(\theta/2)} \Rightarrow \cos(\theta/2) = \frac{1}{2} \Rightarrow \theta = 120^\circ \]
Step 3: Conclusion.
The angle between their initial velocity vectors is \(120^\circ.\)


