The velocity of the center of mass is given by the formula:
\[
\vec{v}_{{CM}} = \frac{m_1 \vec{v_1} + m_2 \vec{v_2}}{m_1 + m_2}
\]
Substitute the values:
\[
\vec{v}_{{CM}} = \frac{(2)(10 \hat{i}) + (5)(3 \hat{i} + 5 \hat{j})}{2 + 5}
\]
\[
\vec{v}_{{CM}} = \frac{20 \hat{i} + 15 \hat{i} + 25 \hat{j}}{7}
\]
\[
\vec{v}_{{CM}} = \frac{35 \hat{i} + 25 \hat{j}}{7}
\]
\[
\vec{v}_{{CM}} = \left(\frac{35}{7}\right) \hat{i} + \left(\frac{25}{7}\right) \hat{j}
\]
\[
\vec{v}_{{CM}} = 5 \hat{i} + \frac{25}{7} \hat{j} \, {m/s}.
\]
Thus, the velocity of the center of mass is \( 5 \hat{i} + \frac{25}{7} \hat{j} \, {m/s} \).