Step 1: Express both numbers in decimal.
\[
2061_B = 2B^3 + 0B^2 + 6B + 1,
\]
\[
601_B = 6B^2 + 0B + 1.
\]
Step 2: Add them and equate to 432.
\[
2061_B + 601_B = (2B^3 + 6B + 1) + (6B^2 + 1),
\]
\[
= 2B^3 + 6B^2 + 6B + 2.
\]
Given this equals $432$:
\[
2B^3 + 6B^2 + 6B + 2 = 432.
\]
Step 3: Simplify equation.
\[
2B^3 + 6B^2 + 6B = 430,
\]
\[
B^3 + 3B^2 + 3B = 215.
\]
Notice left side is $(B+1)^3 - 1$.
\[
(B+1)^3 - 1 = 215 \;\;\Rightarrow\;\; (B+1)^3 = 216.
\]
\[
B+1 = 6 \;\;\Rightarrow\;\; B = 5.
\]
Step 4: Find decimal value of $1010_B$.
\[
1010_B = 1..... B^3 + 0..... B^2 + 1..... B + 0,
\]
\[
= B^3 + B.
\]
With $B=5$,
\[
1010_5 = 5^3 + 5 = 125 + 5 = 130.
\]
\[
\boxed{130}
\]