Step 1: Write the equilibrium reaction.
\[
P_2 + Q_2 \rightleftharpoons 2PQ
\]
Step 2: Initial equilibrium composition.
At equilibrium:
\[
n_{P_2} = 2,\quad n_{Q_2} = 2,\quad n_{PQ} = 2
\]
Step 3: Calculate equilibrium constant $K_c$.
\[
K_c = \frac{(n_{PQ})^2}{n_{P_2} \cdot n_{Q_2}} = \frac{(2)^2}{2 \times 2} = 1
\]
Step 4: After addition of reactants.
After adding 1 mole each of $P_2$ and $Q_2$:
\[
n_{P_2} = 3,\quad n_{Q_2} = 3,\quad n_{PQ} = 2
\]
Step 5: Let reaction proceed to new equilibrium.
Let $x$ moles of $P_2$ and $Q_2$ react:
\[
n_{P_2} = 3 - x,\quad n_{Q_2} = 3 - x,\quad n_{PQ} = 2 + 2x
\]
Step 6: Apply equilibrium condition.
\[
K_c = \frac{(2+2x)^2}{(3-x)(3-x)} = 1
\]
Solving:
\[
2 + 2x = 3 - x \Rightarrow x = \frac{1}{3}
\]
Step 7: Final composition.
\[
n_{P_2} = 3 - \frac{1}{3} = 2.67
\]
\[
n_{Q_2} = 3 - \frac{1}{3} = 2.67
\]
\[
n_{PQ} = 2 + \frac{2}{3} = 2.67
\]