Concept: Refractive index is related to speed of light by: \[ n=\frac{c}{v} \] For light going from a denser to a rarer medium, the critical angle $i_c$ is given by: \[ \sin i_c = \frac{n_2}{n_1} \quad (n_1>n_2) \]
Step 1: Calculate refractive indices of the two media. For first medium: \[ n_1=\frac{3\times10^8}{2.4\times10^8}=\frac{5}{4} \] For second medium: \[ n_2=\frac{3\times10^8}{2.8\times10^8}=\frac{15}{14} \]
Step 2: Check condition for critical angle. Since $n_1>n_2$, critical angle exists when light travels from medium 1 to medium 2.
Step 3: Apply the formula: \[ \sin i_c=\frac{n_2}{n_1} =\frac{\frac{15}{14}}{\frac{5}{4}} =\frac{15}{14}\cdot\frac{4}{5} =\frac{6}{7} \] Step 4: Hence, the critical angle is: \[ \boxed{i_c=\sin^{-1}\!\left(\dfrac{6}{7}\right)} \]



Find the angle $A$ of the second prism so that the light ray suffers dispersion without deviation: 
