Step 1: De-Broglie wavelength is related to momentum by
\[
\lambda=\frac{h}{p}.
\]
Step 2: For identical masses with perpendicular momenta \(p_1\) and \(p_2\), in the centre of mass frame each particle effectively has momentum equal to the vector average magnitude:
\[
p=\frac{\sqrt{p_1^2+p_2^2}}{2}.
\]
Step 3: Express \(p_1=\frac{h}{\lambda_1}\) and \(p_2=\frac{h}{\lambda_2}\).
Step 4: Resultant momentum:
\[
p=\frac{h}{2}\sqrt{\frac1{\lambda_1^2}+\frac1{\lambda_2^2}}
=\frac{h}{2}\frac{\sqrt{\lambda_1^2+\lambda_2^2}}{\lambda_1\lambda_2}.
\]
Step 5: Corresponding wavelength:
\[
\lambda=\frac{h}{p}
=\frac{2\lambda_1\lambda_2}{\sqrt{\lambda_1^2+\lambda_2^2}}.
\]
This matches option (D).