Let S={p1,p2,…,p10} S = \{p_1, p_2, \dots, p_{10}\} S={p1,p2,…,p10} be the set of the first ten prime numbers. Let A=S∪P A = S \cup P A=S∪P, where P P P is the set of all possible products of distinct elements of S S S. Then the number of all ordered pairs (x,y) (x, y) (x,y), where x∈S x \in S x∈S, y∈A y \in A y∈A, and x x x divides y y y, is _________.