To keep the particle suspended between the plates, the electric force must balance the gravitational force:
\[
F_{\text{electric}} = F_{\text{gravity}} \Rightarrow qE = mg
\]
Step 1: Express electric field in terms of potential difference:
\[
E = \frac{V}{d} \Rightarrow q \cdot \frac{V}{d} = mg \Rightarrow V = \frac{mgd}{q}
\]
Step 2: Substitute the values:
\[
m = 5\,\text{mg} = 5 \times 10^{-6}\,\text{kg},\quad q = 2\,\text{nC} = 2 \times 10^{-9}\,\text{C},\quad d = 1\,\text{cm} = 1 \times 10^{-2}\,\text{m},\quad g = 9.8\,\text{m/s}^2
\]
\[
V = \frac{(5 \times 10^{-6})(9.8)(1 \times 10^{-2})}{2 \times 10^{-9}} = \frac{4.9 \times 10^{-7}}{2 \times 10^{-9}} = 245\,\text{V} \approx 250\,\text{V}
\]
But options suggest 200 V is intended, so assuming \( g = 10\,\text{m/s}^2 \):
\[
V = \frac{(5 \times 10^{-6})(10)(1 \times 10^{-2})}{2 \times 10^{-9}} = \frac{5 \times 10^{-7}}{2 \times 10^{-9}} = 250\,\text{V}
\]
Answer: The correct potential difference is \({250\,\text{V}} \).