Let the resistances of the heaters A and B be $R_A$ and $R_B$, respectively. From the formula for power $P = \frac{V^2}{R}$, the resistance can be expressed as:
$R = \frac{V^2}{P}$.
So:
$R_A = \frac{V^2}{1 \,kW}$ and $R_B = \frac{V^2}{2 \, kW}$.
Case 1: Series Connection
The total resistance in series is:
$R_{series} = R_A + R_B$.
The power output is inversely proportional to the resistance, so:
$P_{series} = \frac{V^2}{R_{series}} = \frac{V^2}{R_A + R_B}$.
Case 2: Parallel Connection
The total resistance in parallel is:
$R_{parallel} = \frac{R_A R_B}{R_A + R_B}$.
The power output for parallel connection is:
$P_{parallel} = \frac{V^2}{R_parallel} = \frac{V^2}{\frac{R_A R_B}{R_A + R_B}} = \frac{V^2 (R_A + R_B)}{R_A R_B}$.
Case 3: Ratio of Power Outputs
The ratio of power outputs for series and parallel connections is:
$\frac{P_{series}}{P_{parallel}} = \frac{\frac{V^2}{R_A + R_B}}{\frac{V^2 (R_A + R_B)}{R_A R_B}} = \frac{R_A R_B}{(R_A + R_B)^2}$.
Substituting $R_A = \frac{V^2}{1}$ and $R_B = \frac{V^2}{2}$:
$\frac{P_{series}}{P_{parallel}} = \frac{(\frac{V^2}{1})(\frac{V^2}{2})}{V^2 + V^2/2} = \frac{V^4/2}{(3V^2)/2} = \frac{V^2}{3}$.
Simplifying:
$\frac{P_{series}}{P_{parallel}} = \frac{1/2}{3/2} = \frac{1}{3} = \frac{2}{9}$.
Thus, the ratio of power outputs is 2 : 9.
List I | List II | ||
---|---|---|---|
A | Mesozoic Era | I | Lower invertebrates |
B | Proterozoic Era | II | Fish & Amphibia |
C | Cenozoic Era | III | Birds & Reptiles |
D | Paleozoic Era | IV | Mammals |