We are given two circuits, Fig. A and Fig. B. We are tasked with finding the time constants \( \tau_A \) and \( \tau_B \). The time constant \( \tau \) for an RL or RC circuit is given by the formula:
\( \tau = \frac{L}{R} \quad {for RL circuits, and} \quad \tau = RC \quad {for RC circuits}. \)
Step 1: Let's analyze Fig. A:
- The resistance in Fig. A is \( R_A = 6 \, \Omega + 2 \, \Omega = 8 \, \Omega \).
- The inductance in Fig. A is \( L_A = 2 \, {H} \).
Thus, the time constant for Fig. A is:
\( \tau_A = \frac{L_A}{R_A} = \frac{2 \, {H}}{8 \, \Omega} = \frac{1}{4} \, {s}. \)
Step 2: Now, let's analyze Fig. B:
- The resistance in Fig. B is \( R_B = 10 \, \Omega + 40 \, \Omega = 50 \, \Omega \).
- The capacitance in Fig. B is \( C_B = 0.5 \, \mu{F} = 0.5 \times 10^{-6} \, {F} \).
Thus, the time constant for Fig. B is:
\( \tau_B = R_B \cdot C_B = 50 \, \Omega \cdot 0.5 \times 10^{-6} \, {F} = 5 \times 10^{-5} \, {s}. \)
Thus, the time constants are \( \tau_A = \frac{1}{4} \, {s} \) and \( \tau_B = 5 \, {s} \).
Time Constant Calculation for RL and RC Circuits
The time constant \( \tau \) is given by:
Step 1: Analyze Fig. A (RL Circuit)
- Total resistance: \( R_A = 6 \, \Omega + 2 \, \Omega = 8 \, \Omega \)
- Inductance: \( L_A = 2 \, \text{H} \)
Time constant:
\[
\tau_A = \frac{L_A}{R_A} = \frac{2}{8} = \frac{1}{4} \, \text{s}
\]
Step 2: Analyze Fig. B (RC Circuit)
- Total resistance: \( R_B = 10 \, \Omega + 40 \, \Omega = 50 \, \Omega \)
- Capacitance: \( C_B = 0.5 \, \mu\text{F} = 0.5 \times 10^{-6} \, \text{F} \)
Time constant:
\[
\tau_B = R_B \cdot C_B = 50 \cdot 0.5 \times 10^{-6} = 25 \times 10^{-6} = 5 \times 10^{-5} \, \text{s}
\]
Final Answer:
The correct time constants are:
\[
\boxed{\tau_A = \frac{1}{4} \, \text{s}, \quad \tau_B = 5 \times 10^{-5} \, \text{s}}
\]