Diagonals of a parallelogram bisect each other. Hence $(17.5,23.5)$ is the midpoint of both diagonals.
Opposite to $A(5.5,7.5)$ is $C$ with
\[
C=\big(2\cdot17.5-5.5,\;2\cdot23.5-7.5\big)=(29.5,39.5).
\]
Opposite to $B(13.5,16)$ is $D$ with
\[
D=\big(2\cdot17.5-13.5,\;2\cdot23.5-16\big)=(21.5,31).
\]
Now lengths:
\[
AC=\sqrt{(29.5-5.5)^2+(39.5-7.5)^2}=\sqrt{24^2+32^2}=\sqrt{1600}=40,
\]
\[
BD=\sqrt{(21.5-13.5)^2+(31-16)^2}=\sqrt{8^2+15^2}=\sqrt{289}=17.
\]
\[
\boxed{17 \text{ and } 40}
\]