\(\frac{R_2^2}{R_1}\)
\(\frac{R_1}{R_2}\)
\(\frac{R_2}{R_1}\)
\(\frac{R_1^2}{R_2}\)
Magnetic field at the center of primary coil
\(B=\frac{\mu_0i_1}{2R_1}\)
Now, considering it to be uniform, magnetic flux passing through secondary coil is
\(\phi_2=BA=\frac{\mu_0i_1}{2R_1}(\pi R_{2}^2)\)
Now, \(M=\frac{\phi_2}{i_1}\)
\(=\frac{\mu_0\pi R_{2}^2}{2R_1}\)
\(\therefore\ \ M \propto \frac{R_2^{2}}{R_1}\)
Therefore, the correct option is (A) : \(\frac{R_2^2}{R_1}\).
Given below are two statements: One is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): A typical unfertilized, angiosperm embryo sac at maturity is 8-nucleate and 7-celled.
Reason (R): The egg apparatus has 2 polar nuclei.
In the light of the above statements, choose the correct answer from the options given below:
A sphere of radius R is cut from a larger solid sphere of radius 2R as shown in the figure. The ratio of the moment of inertia of the smaller sphere to that of the rest part of the sphere about the Y-axis is :
Inductance is a key parameter in electrical and electronic circuit designs. Like resistance and capacitance, it is a basic electrical measurement that affects all circuits to some degree.
Inductance is used in many areas of electrical and electronic systems and circuits. The electronic components can be in a variety of forms and may be called by a variety of names: coils, inductors, chokes, transformers, . . . Each of these may also have a variety of different variants: with and without cores and the core materials may be of different types.
There are two ways in which inductance is used: