Let \( m_A = 20 \) kg and \( m_B = 5 \) kg.
Force \( F = 40 \) N.
The bodies start from rest.
Acceleration of body A: \( a_A = F/m_A = 40/20 = 2 \, \text{m/s}^2 \).
Acceleration of body B: \( a_B = F/m_B = 40/5 = 8 \, \text{m/s}^2 \).
Velocity after time \(t\): \( v = at \) (since initial velocity is 0).
Kinetic energy (KE) = \( \frac{1}{2}mv^2 = \frac{1}{2}m(at)^2 = \frac{1}{2}ma^2t^2 \).
Also, \( a = F/m \), so \( KE = \frac{1}{2}m\left(\frac{F}{m}\right)^2 t^2 = \frac{1}{2}m \frac{F^2}{m^2} t^2 = \frac{F^2 t^2}{2m} \).
Given that the kinetic energies acquired are equal: \( KE_A = KE_B \).
\[ \frac{F^2 t_A^2}{2m_A} = \frac{F^2 t_B^2}{2m_B} \]
Since F is the same for both:
\[ \frac{t_A^2}{m_A} = \frac{t_B^2}{m_B} \]
\[ \frac{t_A^2}{t_B^2} = \frac{m_A}{m_B} \]
\[ \left(\frac{t_A}{t_B}\right)^2 = \frac{20}{5} = 4 \]
\[ \frac{t_A}{t_B} = \sqrt{4} = 2 \]
So, \( t_A : t_B = 2:1 \).
This matches option (2).