Two binary operations \( \oplus \) and \( \) are defined over the set \( \{ a, e, f, g, h \} \) as per the following tables:
Thus, according to the first table \( f \oplus g = a \), while according to the second table \( g h = f \), and so on. Also, let \( f^2 = f \oplus f \), \( g^3 = g g g \), and so on.
| \( \oplus \) | a | e | f | g | h | a |
|---|---|---|---|---|---|---|
| a | a | a | e | f | g | h |
| e | e | e | f | g | h | a |
| f | f | f | g | h | a | e |
| g | g | g | h | a | e | f |
| h | h | h | a | e | f | g |
| \( \) | a | e | f | g | h |
|---|---|---|---|---|---|
| a | a | a | a | a | a |
| e | a | e | f | g | h |
| f | a | f | h | e | g |
| g | a | g | e | h | f |
| h | a | h | g | f | e |
Pick the CORRECT eigenvalue(s) of the matrix [A] from the following choices.
\[ [A] = \begin{bmatrix} 6 & 8 \\ 4 & 2 \end{bmatrix} \]
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: