Two binary operations \( \oplus \) and \( \) are defined over the set \( \{ a, e, f, g, h \} \) as per the following tables:
Thus, according to the first table \( f \oplus g = a \), while according to the second table \( g h = f \), and so on. Also, let \( f^2 = f \oplus f \), \( g^3 = g g g \), and so on.
\( \oplus \) | a | e | f | g | h | a |
---|---|---|---|---|---|---|
a | a | a | e | f | g | h |
e | e | e | f | g | h | a |
f | f | f | g | h | a | e |
g | g | g | h | a | e | f |
h | h | h | a | e | f | g |
\( \) | a | e | f | g | h |
---|---|---|---|---|---|
a | a | a | a | a | a |
e | a | e | f | g | h |
f | a | f | h | e | g |
g | a | g | e | h | f |
h | a | h | g | f | e |