We are asked to find the standard deviation of the sum \( A + B \), given individual standard deviations and their correlation:
Let
\( \sigma_A = 10'' \),
\( \sigma_B = 20'' \),
\( \rho_{AB} = 0.6 \)
Using the formula for the variance of the sum of two correlated variables:
\[
\sigma^2_{A+B} = \sigma_A^2 + \sigma_B^2 + 2 \cdot \rho_{AB} \cdot \sigma_A \cdot \sigma_B
\]
Substitute values:
\[
\sigma^2_{A+B} = 10^2 + 20^2 + 2 \cdot 0.6 \cdot 10 \cdot 20 = 100 + 400 + 240 = 740
\]
\[
\sigma_{A+B} = \sqrt{740} \approx 27.20''
\]