Step 1: From the top view, we observe a full \(4 \times 4\) grid.
This means there are \(16\) vertical columns in total.
\bigskip
Step 2: The front view shows column heights increasing stepwise from left to right as:
\[
1,\; 2,\; 3,\; 4
\]
\bigskip
Step 3: The side view shows the same stepped height pattern:
\[
1,\; 2,\; 3,\; 4
\]
\bigskip
Step 4: To obtain the \emph{minimum} number of cubes, each vertical column must have a height equal to the minimum height allowed by both the front and side views.
Thus, the height matrix is:
\[
\begin{matrix}
1 & 1 & 1 & 1
1 & 2 & 2 & 2
1 & 2 & 3 & 3
1 & 2 & 3 & 4
\end{matrix}
\]
\bigskip
Step 5: Sum of all column heights:
\[
(4\times1) + (3\times2 + 1\times1) + (2\times3 + 2\times2) + (1\times4 + 1\times3 + 1\times2 + 1\times1)
= 25
\]
\bigskip
Final Answer:
\[
\boxed{25}
\]
\bigskip