Let \( P(A) = \frac{1}{3}, \, P(B) = \frac{1}{3}, \) and \( P(C) = \frac{1}{3}, \) since each urn is equally likely to be chosen.
Conditional Probabilities of Drawing a Black Ball:
\[ P(\text{Black}|A) = \frac{5}{12}, \quad P(\text{Black}|B) = \frac{7}{12}, \quad P(\text{Black}|C) = \frac{6}{12} \]
Total Probability of Drawing a Black Ball:
\[ P(\text{Black}) = P(A) \times P(\text{Black}|A) + P(B) \times P(\text{Black}|B) + P(C) \times P(\text{Black}|C) \]
\[ = \frac{1}{3} \times \frac{5}{12} + \frac{1}{3} \times \frac{7}{12} + \frac{1}{3} \times \frac{6}{12} \]
\[ = \frac{18}{36} = \frac{1}{2} \]
Using Bayes' Theorem:
\[ P(A|\text{Black}) = \frac{P(A) \times P(\text{Black}|A)}{P(\text{Black})} = \frac{\frac{1}{3} \times \frac{5}{12}}{\frac{1}{2}} = \frac{5}{18} \]
If probability of happening of an event is 57%, then probability of non-happening of the event is
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.