We are given three sound waves with frequencies:
The number of beats per second is determined by the difference in frequencies of the sound waves.
The beat frequency is the difference in frequencies between the two closest sound waves:
Thus, the total number of beats produced per second will be:
\(1 + 1 = 2 \, \text{beats per second}\)
The correct answer is: Option 4: 2 beats per second
Two loudspeakers (\(L_1\) and \(L_2\)) are placed with a separation of \(10 \, \text{m}\), as shown in the figure. Both speakers are fed with an audio input signal of the same frequency with constant volume. A voice recorder, initially at point \(A\), at equidistance to both loudspeakers, is moved by \(25 \, \text{m}\) along the line \(AB\) while monitoring the audio signal. The measured signal was found to undergo \(10\) cycles of minima and maxima during the movement. The frequency of the input signal is _____________ Hz.
(Speed of sound in air is \(324 \, \text{m/s}\) and \( \sqrt{5} = 2.23 \)) 
What is Microalbuminuria ?
The output (Y) of the given logic implementation is similar to the output of an/a …………. gate.
Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set frequency and wavelength.
Waves in which the medium moves at right angles to the direction of the wave.
Examples of transverse waves:
The high point of a transverse wave is a crest. The low part is a trough.
A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.
Examples of longitudinal waves: