Let length of race = $d$. When A finishes $d$, B covers $d - 12$, C covers $d - 18$. Also, when B finishes $d$, C covers $d - 8$. Ratio speeds: A:B = $d : (d-12)$, B:C = $d : (d-8)$. From A:C ratio = $d : (d-18)$ = A:B × B:C = $\frac{d}{d-12} \times \frac{d}{d-8}$. Cross-multiply and solve: $(d-18)(d) = (d-12)(d-8) \Rightarrow d^2 - 18d = d^2 - 20d + 96 \Rightarrow 2d = 96 \Rightarrow d = 48$.