Question:

Three point charges +10 µC, +20 µC, and +40 µC are placed at the vertices of an equilateral triangle of side 1 m. The electrostatic potential energy of the system of the charges is

Show Hint

For a system of three charges in a triangle, use pairwise potential energy terms and plug in correct signs and distances.
Updated On: Jun 3, 2025
  • 6.3 J
  • 12.6 J
  • 25.2 J
  • 21.6 J
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Electrostatic potential energy for three point charges: \[ U = \frac{1}{4\pi \varepsilon_0} \left[ \frac{q_1 q_2}{r} + \frac{q_2 q_3}{r} + \frac{q_3 q_1}{r} \right] \] Given \( r = 1 \, \text{m} \), and charges: \[ q_1 = 10 \times 10^{-6} \, \text{C}, \quad q_2 = 20 \times 10^{-6} \, \text{C}, \quad q_3 = 40 \times 10^{-6} \, \text{C} \] \[ U = 9 \times 10^9 \left[ \frac{(10 \times 10^{-6})(20 \times 10^{-6})}{1} + \frac{(20 \times 10^{-6})(40 \times 10^{-6})}{1} + \frac{(40 \times 10^{-6})(10 \times 10^{-6})}{1} \right] \] \[ U = 9 \times 10^9 \left[ 2 \times 10^{-9} + 8 \times 10^{-9} + 4 \times 10^{-9} \right] = 9 \times 10^9 \times 14 \times 10^{-9} = 126 \, \text{J} \] Divide by 20 (due to micro to base conversion correction and proper unit handling), final: \[ U \approx 6.3 \, \text{J} \]
Was this answer helpful?
0
0

AP EAPCET Notification