Number fractions by chains: $n_1:n_2:n_3=1:1:2$ \ ($\sum n_i=4$).
$M_1=10000,\ M_2=30000,\ M_3=60000\ \text{g/mol}$.
Number-average molar mass:\ $M_n=\dfrac{\sum n_i M_i}{\sum n_i}=\dfrac{(1)(10000)+(1)(30000)+(2)(60000)}{4}=\dfrac{160000}{4}=40000\ \text{g/mol}$.
Weight-average molar mass:\ $M_w=\dfrac{\sum n_i M_i^2}{\sum n_i M_i}=\dfrac{(1)(10000)^2+(1)(30000)^2+(2)(60000)^2}{160000}=\dfrac{8.2\times10^9}{1.6\times10^5}=51250\ \text{g/mol}$.
PDI:\ $=\dfrac{M_w}{M_n}=\dfrac{51250}{40000}=1.28125\Rightarrow \boxed{1.28}$.