

The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
A Wheatstone bridge is initially at room temperature and all arms of the bridge have same value of resistances \[ (R_1=R_2=R_3=R_4). \] When \(R_3\) resistance is heated, its resistance value increases by \(10%\). The potential difference \((V_a-V_b)\) after \(R_3\) is heated is _______ V. 
Consider the grammar $S \rightarrow aSa \mid bSb \mid a \mid b$. Which one of the following options correctly characterizes the language generated by the given grammar over the alphabet {a,b}
float foo(int n){
if(n <= 2) return 1;
else return (2*foo(n-1) + 3*foo(n-2));
}
If a concentrated load of 50 kN is applied at point C, then what will be the shear developed at point C? 
Current electricity is defined as the flow of electrons from one section of the circuit to another.
There are two types of current electricity as follows:
The current electricity whose direction remains the same is known as direct current. Direct current is defined by the constant flow of electrons from a region of high electron density to a region of low electron density. DC is used in many household appliances and applications that involve a battery.
The current electricity that is bidirectional and keeps changing the direction of the charge flow is known as alternating current. The bi-directionality is caused by a sinusoidally varying current and voltage that reverses directions, creating a periodic back-and-forth motion for the current. The electrical outlets at our homes and industries are supplied with alternating current.