Step 1: List the given data.
- Cell A: \( E_A = 2 \, \text{V} \), \( r_A = 5 \, \Omega \).
- Cell B: \( E_B = 3 \, \text{V} \), \( r_B = 5 \, \Omega \).
- Cell C: \( E_C = 5 \, \text{V} \), \( r_C = 1 \, \Omega \).
The cells are in parallel, so they share the same terminal voltage \( V \). We need to find the currents \( I_A \), \( I_B \), and \( I_C \).
Step 2: Set up the current equations.
The current through each cell is:
\[
I = \frac{E - V}{r}
\]
\[
I_A = \frac{2 - V}{5}, \quad I_B = \frac{3 - V}{5}, \quad I_C = \frac{5 - V}{1}
\]
Since no external load is mentioned, apply Kirchhoff’s Current Law (KCL) at the junction (net current is zero):
\[
I_A + I_B + I_C = 0
\]
Step 3: Solve for \( V \).
\[
\frac{2 - V}{5} + \frac{3 - V}{5} + \frac{5 - V}{1} = 0
\]
\[
\frac{(2 - V) + (3 - V)}{5} + (5 - V) = 0
\]
\[
\frac{5 - 2V}{5} + (5 - V) = 0
\]
\[
(5 - 2V) + 5(5 - V) = 0
\]
\[
5 - 2V + 25 - 5V = 0
\]
\[
30 - 7V = 0
\]
\[
V = \frac{30}{7} \approx 4.2857 \, \text{V}
\]
Step 4: Calculate the currents.
- Cell A:
\[
I_A = \frac{2 - \frac{30}{7}}{5} = \frac{\frac{14 - 30}{7}}{5} = \frac{-\frac{16}{7}}{5} = -\frac{16}{35} \approx -0.4571 \, \text{A}
\]
- Cell B:
\[
I_B = \frac{3 - \frac{30}{7}}{5} = \frac{\frac{21 - 30}{7}}{5} = \frac{-\frac{9}{7}}{5} = -\frac{9}{35} \approx -0.2571 \, \text{A}
\]
- Cell C:
\[
I_C = \frac{5 - \frac{30}{7}}{1} = \frac{\frac{35 - 30}{7}}{1} = \frac{5}{7} \approx 0.7143 \, \text{A}
\]
Step 5: Interpret the results.
- \( I_A \approx -0.4571 \, \text{A} \): Negative, so Cell A is being charged.
- \( I_B \approx -0.2571 \, \text{A} \): Negative, so Cell B is being charged.
- \( I_C \approx 0.7143 \, \text{A} \): Positive, so Cell C supplies current.
Step 6: Verify.
\[
-\frac{16}{35} - \frac{9}{35} + \frac{5}{7} = -\frac{25}{35} + \frac{25}{35} = 0
\]
The sum is zero, confirming the solution.
% Final Answer
Final Answer:
The currents are:
\[
I_A = -\frac{16}{35} \, \text{A} \approx -0.4571 \, \text{A}, \quad I_B = -\frac{9}{35} \, \text{A} \approx -0.2571 \, \text{A}, \quad I_C = \frac{5}{7} \, \text{A} \approx 0.7143 \, \text{A}
\]