Step 1: Use the relation for gravity on a planet:
\[
g = \dfrac{GM}{R^2}, \quad \text{where } M = \text{mass}, R = \text{radius}
\]
Step 2: Use the density formula:
\[
\rho = \dfrac{M}{\dfrac{4}{3}\pi R^3} \Rightarrow R^3 = \dfrac{M}{\rho}
\Rightarrow R = \left( \dfrac{M}{\rho} \right)^{1/3}
\]
Step 3: Substitute into gravity expression:
\[
g = \dfrac{GM}{\left( \dfrac{M}{\rho} \right)^{2/3}} = G M^{1/3} \rho^{2/3}
\Rightarrow g' \propto M^{1/3} \rho^{2/3}
\]
Step 4: Plug in values:
\[
M = 8M_e, \quad \rho = 27\rho_e
\Rightarrow g' = g \cdot 8^{1/3} \cdot 27^{2/3} = g \cdot 2 \cdot 9 = \boxed{18g}
\]