Let $B_1$, $B_2$, and $B_3$ be the events of selecting Box-1, Box-2, and Box-3, respectively. Let $W$ be the event of drawing a white ball. Given:
$P(B_1) = \frac{1}{2}$
$P(B_2) = \frac{1}{6}$
$P(B_3) = \frac{1}{3}$
Conditional probabilities:
$P(W|B_1) = \frac{1}{3}$ (1 white ball out of 3 total)
$P(W|B_2) = \frac{2}{3}$ (2 white balls out of 3 total)
$P(W|B_3) = \frac{3}{6} = \frac{1}{2}$ (3 white balls out of 6 total)
We need to find $P(B_2|W)$. Using Bayes' Theorem: $$P(B_2|W) = \frac{P(W|B_2)P(B_2)}{P(W)}$$ First, calculate $P(W)$ using the Law of Total Probability: $$P(W) = P(W|B_1)P(B_1) + P(W|B_2)P(B_2) + P(W|B_3)P(B_3)$$ $$P(W) = \left(\frac{1}{3} \times \frac{1}{2}\right) + \left(\frac{2}{3} \times \frac{1}{6}\right) + \left(\frac{1}{2} \times \frac{1}{3}\right)$$ $$P(W) = \frac{1}{6} + \frac{2}{18} + \frac{1}{6} = \frac{1}{6} + \frac{1}{9} + \frac{1}{6} = \frac{3}{18} + \frac{2}{18} + \frac{3}{18} = \frac{8}{18} = \frac{4}{9}$$ Now, calculate $P(B_2|W)$: $$P(B_2|W) = \frac{\left(\frac{2}{3} \times \frac{1}{6}\right)}{\frac{4}{9}} = \frac{\frac{2}{18}}{\frac{4}{9}} = \frac{\frac{1}{9}}{\frac{4}{9}} = \frac{1}{9} \times \frac{9}{4} = \frac{1}{4} = 0.25$$
Answer: The probability that the white ball is drawn from Box-2 is 0.25.