Let the seven consecutive integers be:
\[
a,\ a+1,\ a+2,\ a+3,\ a+4,\ a+5,\ a+6
\]
Average of first five:
\[
\frac{a + (a+1) + (a+2) + (a+3) + (a+4)}{5} = \frac{5a + 10}{5} = a + 2
\]
So $n = a+2 \ \Rightarrow \ a = n - 2$.
Average of all seven:
\[
\frac{7a + 21}{7} = a + 3 = (n-2) + 3 = n+1
\]
\[
\boxed{n+1}
\]