Let \( V \) be the volume of the wire, \( W \) be the work done, \( Y \) be the Young's modulus, and \( \epsilon \) be the strain. Given: \( V = 2 \text{ cm}^3 = 2 \times 10^{
-6} \text{ m}^3 \) \( W = 16 \times 10^2 \text{ J} \) \( Y = 4 \times 10^{12} \text{ Nm}^{
-2} \) The work done on the wire is given by \[ W = \frac{1}{2} \times \text{stress} \times \text{strain} \times \text{volume} \] We know that Young's modulus \( Y = \frac{\text{stress}}{\text{strain}} \), so \(\text{stress} = Y \times \text{strain} = Y \epsilon \). Then \[ W = \frac{1}{2} \times Y \epsilon \times \epsilon \times V = \frac{1}{2} Y \epsilon^2 V \] \[ \epsilon^2 = \frac{2W}{YV} \] \[ \epsilon = \sqrt{\frac{2W}{YV}} \] Substituting the given values: \[ \epsilon = \sqrt{\frac{2 \times 16 \times 10^2}{4 \times 10^{12} \times 2 \times 10^{-6}}} \] \[ \epsilon = \sqrt{\frac{32 \times 10^2}{8 \times 10^6}} \] \[ \epsilon = \sqrt{4 \times 10^{-4}} \] \[ \epsilon = 2 \times 10^{-2} = 0.02 \] The strain produced in the wire is \( 0.02 \).
A steel wire of length 2 m and Young's modulus \( 2.0 \times 10^{11} \, \text{N/m}^2 \) is stretched by a force. If Poisson's ratio and transverse strain for the wire are \( 0.2 \) and \( 10^{-3} \) respectively, then the elastic potential energy density of the wire is \( \times 10^6\), in SI units .
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))