Let \( V \) be the volume of the wire, \( W \) be the work done, \( Y \) be the Young's modulus, and \( \epsilon \) be the strain. Given: \( V = 2 \text{ cm}^3 = 2 \times 10^{
-6} \text{ m}^3 \) \( W = 16 \times 10^2 \text{ J} \) \( Y = 4 \times 10^{12} \text{ Nm}^{
-2} \) The work done on the wire is given by \[ W = \frac{1}{2} \times \text{stress} \times \text{strain} \times \text{volume} \] We know that Young's modulus \( Y = \frac{\text{stress}}{\text{strain}} \), so \(\text{stress} = Y \times \text{strain} = Y \epsilon \). Then \[ W = \frac{1}{2} \times Y \epsilon \times \epsilon \times V = \frac{1}{2} Y \epsilon^2 V \] \[ \epsilon^2 = \frac{2W}{YV} \] \[ \epsilon = \sqrt{\frac{2W}{YV}} \] Substituting the given values: \[ \epsilon = \sqrt{\frac{2 \times 16 \times 10^2}{4 \times 10^{12} \times 2 \times 10^{-6}}} \] \[ \epsilon = \sqrt{\frac{32 \times 10^2}{8 \times 10^6}} \] \[ \epsilon = \sqrt{4 \times 10^{-4}} \] \[ \epsilon = 2 \times 10^{-2} = 0.02 \] The strain produced in the wire is \( 0.02 \).
Two slabs with square cross section of different materials $(1,2)$ with equal sides $(l)$ and thickness $\mathrm{d}_{1}$ and $\mathrm{d}_{2}$ such that $\mathrm{d}_{2}=2 \mathrm{~d}_{1}$ and $l>\mathrm{d}_{2}$. Considering lower edges of these slabs are fixed to the floor, we apply equal shearing force on the narrow faces. The angle of deformation is $\theta_{2}=2 \theta_{1}$. If the shear moduli of material 1 is $4 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$, then shear moduli of material 2 is $\mathrm{x} \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$, where value of x is _______ .
A steel wire of length 2 m and Young's modulus \( 2.0 \times 10^{11} \, \text{N/m}^2 \) is stretched by a force. If Poisson's ratio and transverse strain for the wire are \( 0.2 \) and \( 10^{-3} \) respectively, then the elastic potential energy density of the wire is \( \times 10^6\), in SI units .
If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: