The correct option is(A): -608 J.
Work done (W) \(=-{{P}_{ext}}({{V}_{2}}-{{V}_{1}})\)
\(=-3\times (6-4)=-6\,L.\,\,atm\) \(=-6\times 101.32\,J\)
\((\therefore \,1\,\,L\text{-atm=101}\text{.32}\,\text{J})\)
\(=-607.92\approx - 608\,J\)
The current passing through the battery in the given circuit, is:
A bob of heavy mass \(m\) is suspended by a light string of length \(l\). The bob is given a horizontal velocity \(v_0\) as shown in figure. If the string gets slack at some point P making an angle \( \theta \) from the horizontal, the ratio of the speed \(v\) of the bob at point P to its initial speed \(v_0\) is :
A full wave rectifier circuit with diodes (\(D_1\)) and (\(D_2\)) is shown in the figure. If input supply voltage \(V_{in} = 220 \sin(100 \pi t)\) volt, then at \(t = 15\) msec:
In thermodynamics, work is a way of energy transfer from a system to surroundings, under the influence of external factors such gravity, electromagnetic forces, pressure/volume etc.
Energy (ΔU) can cross the boundary of a system in two forms -> Work (W) and Heat (q). Both work and heat refer to processes by which energy is transferred to or from a substance.
ΔU=W+q
Work done by a system is defined as the quantity of energy exchanged between a system and its surroundings. It is governed by external factors such as an external force, pressure or volume or change in temperature etc.
Work (W) in mechanics is displacement (d) against a resisting force (F).
Work has units of energy (Joule, J)