Step 1: The exponent in $e^{-\frac{x^2}{\alpha k T}}$ must be dimensionless. So, $[\alpha] = [\frac{x^2}{kT}]$.
Step 2: Dimensions of $kT$ are the same as Energy ($[ML^2T^{-2}]$). Thus, $[\alpha] = \frac{[L^2]}{[ML^2T^{-2}]} = [M^{-1}T^2]$.
Step 3: Work $W$ has dimensions $[ML^2T^{-2}]$. In the equation $W = \alpha \beta^2$, the exponential part is dimensionless.
Step 4: $[ML^2T^{-2}] = [M^{-1}T^2] \cdot [\beta^2]$.
Step 5: $[\beta^2] = [M^2L^2T^{-4}] \Rightarrow [\beta] = [MLT^{-2}]$.