The wavelength of an electron can be calculated using the de Broglie relation:
\[
\lambda = \frac{h}{mv}
\]
Where:
- \( h \) is Planck's constant, \( 6.626 \times 10^{-34} \, \text{J} \cdot \text{s} \),
- \( m \) is the mass of the electron, \( 9.1 \times 10^{-31} \, \text{kg} \),
- \( v \) is the velocity of the electron, \( 2.2 \times 10^7 \, \text{ms}^{-1} \).
Substitute the values into the formula:
\[
\lambda = \frac{6.626 \times 10^{-34}}{(9.1 \times 10^{-31})(2.2 \times 10^7)} \approx 3.3 \times 10^{-11} \, \text{m}.
\]
Thus, the wavelength of the electron is \( 3.3 \times 10^{-11} \, \text{m} \).