Step 1: Recall volume formula of a square pyramid
The volume of a pyramid is given by:
\[
V = \frac{1}{3} \times (\text{Base Area}) \times h
\]
Here, \(V = 200 \, \text{cm}^3\) and \(h = 13 \, \text{cm}\).
Step 2: Find the base area
\[
200 = \frac{1}{3} \times (\text{Base Area}) \times 13
\]
\[
\text{Base Area} = \frac{200 \times 3}{13} = \frac{600}{13} \approx 46.15 \, \text{cm}^2
\]
Step 3: Find the side of the square base
Let the side length be \(a\). Then:
\[
a^2 = 46.15 \quad \Rightarrow \quad a = \sqrt{46.15} \approx 6.79 \, \text{cm}
\]
Step 4: Find the slant edge (apex to vertex of base)
The apex is above the center of the base. The distance from the center of the square base to a vertex is half the diagonal:
\[
\text{Half diagonal} = \frac{a \sqrt{2}}{2} = \frac{6.79 \times \sqrt{2}}{2} \approx \frac{6.79 \times 1.414}{2} \approx 4.80 \, \text{cm}
\]
Now, the slant edge is the hypotenuse of a right triangle with legs \(h = 13\) and half diagonal = 4.80.
\[
\text{Slant edge} = \sqrt{13^2 + 4.80^2} = \sqrt{169 + 23.04} = \sqrt{192.04} \approx 13.86 \, \text{cm}
\]
Step 5: Round to nearest integer
\[
\text{Slant edge} \approx 14 \, \text{cm}
\]
\[
\boxed{14 \, \text{cm}}
\]