We calculate the triple integral:
\[
\int_2^3 \int_1^2 \int_0^1 8 x y z \, dz \, dy \, dx
\]
First, integrate with respect to \( z \):
\[
\int_0^1 8 x y z \, dz = 8 x y \left[ \frac{z^2}{2} \right]_0^1 = 4 x y
\]
Next, integrate with respect to \( y \):
\[
\int_1^2 4 x y \, dy = 4 x \left[ \frac{y^2}{2} \right]_1^2 = 4 x \cdot \frac{3}{2} = 6 x
\]
Finally, integrate with respect to \( x \):
\[
\int_2^3 6 x \, dx = 6 \left[ \frac{x^2}{2} \right]_2^3 = 6 \cdot \left( \frac{9}{2} - \frac{4}{2} \right) = 6 \cdot \frac{5}{2} = 15
\]
Thus, the volume is \( \boxed{15} \).