Given $\omega=20000\pi~\text{rad/s}$, $L=\dfrac{1}{20\pi}\,\text{mH}$, $C=\dfrac{1}{20\pi}\,\text{mF}$.
\[
X_L=\omega L=\left(20000\pi\right)\!\left(\frac{10^{-3}}{20\pi}\right)=1~\Omega,\qquad
X_C=\frac{1}{\omega C}=\frac{1}{(20000\pi)\left(\frac{10^{-3}}{20\pi}\right)}=1~\Omega.
\]
Thus the net reactance is zero (series resonance). Total series resistance
\[
R_{\text{tot}}=50+25+25=100~\Omega.
\]
Source RMS voltage $=10$ V $\Rightarrow$
\[
I_{\rm rms}=\frac{10}{100}=0.10~\text{A}=100.0~\text{mA}.
\]
Final Answer: 100.0 mA