The instantaneous power dissipated in an AC circuit is given by the formula:
\[
P = V_{\text{max}} I_{\text{max}} \cos(\phi)
\]
Where:
- \( V_{\text{max}} \) is the maximum voltage,
- \( I_{\text{max}} \) is the maximum current,
- \( \phi \) is the phase difference between the voltage and current.
From the given expressions:
- \( V = 100 \sin(100t) \), so \( V_{\text{max}} = 100 \) volts,
- \( i = 100 \sin(100t + \frac{\pi}{3}) \), so \( I_{\text{max}} = 100 \) mA or \( 0.1 \) A,
- The phase difference \( \phi = \frac{\pi}{3} \).
Now, substitute these values into the power formula:
\[
P = (100)(0.1) \cos\left(\frac{\pi}{3}\right)
\]
Since \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \), we get:
\[
P = (100)(0.1) \times \frac{1}{2} = 2.5 \, \text{watt}
\]
Thus, the correct answer is option (B) 2.5 watt.