Question:

The velocity, \( v \), at which the mass of a particle is double its rest mass is:

Show Hint

In relativity, the velocity at which the particle's mass doubles is given by \( v = \sqrt{3} c \), which is less than the speed of light.
Updated On: Jan 6, 2026
  • \( v = c \)
  • \( v = \sqrt{3} c \)
  • \( v = \sqrt{2} c \)
  • \( v = 2c \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Relativistic mass-energy relationship. The relativistic mass \( m \) of a particle is related to its velocity by the formula: \[ m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} \] Where \( m_0 \) is the rest mass, \( v \) is the velocity, and \( c \) is the speed of light.
Step 2: Conclusion. For \( m = 2 m_0 \), solving the equation gives \( v = \sqrt{3} c \).
Was this answer helpful?
0
0