Step 1: Find the magnitudes of the vectors
Compute the magnitudes: \[ |\vec{a}| = \sqrt{2^2 + (-1)^2 + 1^2} = \sqrt{6}, \,\] \[|\vec{b}| = \sqrt{1^2 + (-3)^2 + (-5)^2} = \sqrt{35}, \,\]\[ |\vec{c}| = \sqrt{(-3)^2 + 4^2 + 4^2} = \sqrt{41}. \]
Step 2: Check for right angle using dot products
Calculate \( \vec{a} \cdot \vec{b} \), \( \vec{b} \cdot \vec{c} \), and \( \vec{c} \cdot \vec{a} \). If one is zero, the triangle is right-angled. For example: \[ \vec{a} \cdot \vec{c} = (2)(-3) + (-1)(4) + (1)(4) = -6 - 4 + 4 = 0. \]
Step 3: Conclude the type of triangle
Since \( \vec{a} \cdot \vec{c} = 0 \), the triangle is right-angled.
List-I | List-II |
(A) Absolute maximum value | (I) 3 |
(B) Absolute minimum value | (II) 0 |
(C) Point of maxima | (III) -5 |
(D) Point of minima | (IV) 4 |