Step 1: Find the magnitudes of the vectors
Compute the magnitudes: \[ |\vec{a}| = \sqrt{2^2 + (-1)^2 + 1^2} = \sqrt{6}, \,\] \[|\vec{b}| = \sqrt{1^2 + (-3)^2 + (-5)^2} = \sqrt{35}, \,\]\[ |\vec{c}| = \sqrt{(-3)^2 + 4^2 + 4^2} = \sqrt{41}. \]
Step 2: Check for right angle using dot products
Calculate \( \vec{a} \cdot \vec{b} \), \( \vec{b} \cdot \vec{c} \), and \( \vec{c} \cdot \vec{a} \). If one is zero, the triangle is right-angled. For example: \[ \vec{a} \cdot \vec{c} = (2)(-3) + (-1)(4) + (1)(4) = -6 - 4 + 4 = 0. \]
Step 3: Conclude the type of triangle
Since \( \vec{a} \cdot \vec{c} = 0 \), the triangle is right-angled.
Show that \( R \) is an equivalence relation. Also, write the equivalence class \([2]\).
| List-I | List-II |
| (A) Absolute maximum value | (I) 3 |
| (B) Absolute minimum value | (II) 0 |
| (C) Point of maxima | (III) -5 |
| (D) Point of minima | (IV) 4 |
In number theory, it is often important to find factors of an integer \( N \). The number \( N \) has two trivial factors, namely 1 and \( N \). Any other factor, if it exists, is called a non-trivial factor of \( N \). Naresh has plotted a graph of some constraints (linear inequations) with points \( A(0, 50) \), \( B(20, 40) \), \( C(50, 100) \), \( D(0, 200) \), and \( E(100, 0) \). This graph is constructed using three non-trivial constraints and two trivial constraints. One of the non-trivial constraints is \( x + 2y \geq 100 \).

Based on the above information, answer the following questions: