To determine the value of \( \lambda \) that makes the vectors \(\mathbf{a} = 3\hat{i}-\hat{j}+2\hat{k}\), \(\mathbf{b} = 2\hat{i}+\hat{j}+3\hat{k}\), and \(\mathbf{c} = \hat{i}+\lambda\hat{j}-\hat{k}\) coplanar, we need to use the condition for coplanarity of vectors: the scalar triple product of these vectors must be zero.
The scalar triple product \(\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})\) can be calculated using the determinant of a \(3 \times 3\) matrix whose rows are the components of the vectors:
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} 3 & -1 & 2 \\ 2 & 1 & 3 \\ 1 & \lambda & -1 \end{vmatrix}$$
Expanding the determinant:
$$= 3 \begin{vmatrix} 1 & 3 \\ \lambda & -1 \end{vmatrix} + 1 \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} + 2 \begin{vmatrix} 2 & 1 \\ 1 & \lambda \end{vmatrix}$$
Calculating each of the \(2 \times 2\) determinants:
\(\begin{vmatrix} 1 & 3 \\ \lambda & -1 \end{vmatrix} = 1(-1) - 3\lambda = -1 - 3\lambda\)
\(\begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} = 2(-1) - 3(1) = -2 - 3 = -5\)
\(\begin{vmatrix} 2 & 1 \\ 1 & \lambda \end{vmatrix} = 2\lambda - 1\)
Substituting these back into the expression:
$$= 3(-1 - 3\lambda) + 1(-5) + 2(2\lambda - 1)$$
$$= -3 - 9\lambda - 5 + 4\lambda - 2$$
Combine like terms:
$$= -10 - 5\lambda$$
For the vectors to be coplanar, set this equal to zero:
$$-10 - 5\lambda = 0$$
Solving for \( \lambda \):
$$-5\lambda = 10$$
$$\lambda = -2$$
Thus, the value of \( \lambda \) that makes the vectors coplanar is:
-2