Step 1: Write down the components of the vector field \( \vec{A} \).
\[
A_x = 2x + 1, \quad A_y = x^2 - 6y, \quad A_z = xy^2 + 3z
\]
Step 2: Calculate the divergence of the vector field \( \vec{A} \).
\[
\nabla \cdot \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}
\]
\[
\frac{\partial A_x}{\partial x} = 2, \quad \frac{\partial A_y}{\partial y} = -6, \quad \frac{\partial A_z}{\partial z} = 3
\]
\[
\nabla \cdot \vec{A} = 2 + (-6) + 3 = -1
\]
Step 3: Interpret the result of the divergence.
Since \( \nabla \cdot \vec{A} = -1<0 \), the vector field has sinks.