The variance of the following continuous frequency distribution is:
| class interval | Frequency |
| 0 -- 4 | 2 |
| 4 -- 8 | 3 |
| 8 -- 12 | 2 |
| 12 -- 16 | 1 |
Step 1: Class midpoints and frequencies.
For each class interval, the midpoint \((m)\) is: \[ 0\!-\!4:\,m=2, \quad 4\!-\!8:\,m=6, \quad 8\!-\!12:\,m=10, \quad 12\!-\!16:\,m=14. \] Frequencies \((f)\) are 2, 3, 2, 1 respectively. The total frequency \(N = 2+3+2+1=8.\)
Step 2: Calculate the mean \(\overline{x}\).
\[ \overline{x} = \frac{\sum f\,m}{N} = \frac{2\cdot 2 + 3\cdot 6 + 2\cdot 10 + 1\cdot 14}{8} = \frac{4 + 18 + 20 + 14}{8} = \frac{56}{8} = 7. \]
Step 3: Compute \(\sum f\,m^2\) and then variance.
\[ \sum f\,m^2 = 2\cdot 2^2 \;+\; 3\cdot 6^2 \;+\; 2\cdot 10^2 \;+\; 1\cdot 14^2 = 2\cdot 4 + 3\cdot 36 + 2\cdot 100 + 196 = 8 + 108 + 200 + 196 = 512. \] Hence \[ E[X^2] = \frac{\sum f\,m^2}{N} = \frac{512}{8} = 64. \] The variance is \[ \sigma^2 = E[X^2] - (\overline{x})^2 = 64 \;-\; 7^2 = 64 -49 = 15. \] Therefore, the variance is \(\boxed{15}.\)
| Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
|---|---|---|---|---|---|---|
| Frequency | 11 | 8 | 15 | 7 | 10 | 9 |
Let the Mean and Variance of five observations $ x_i $, $ i = 1, 2, 3, 4, 5 $ be 5 and 10 respectively. If three observations are $ x_1 = 1, x_2 = 3, x_3 = a $ and $ x_4 = 7, x_5 = b $ with $ a>b $, then the Variance of the observations $ n + x_n $ for $ n = 1, 2, 3, 4, 5 $ is
Find the mean of the following distribution:
\[\begin{array}{|c|c|c|c|c|c|c|c|} \hline \textbf{Class-interval} & 11-13 & 13-15 & 15-17 & 17-19 & 19-21 & 21-23 & 23-25 \\ \hline \text{Frequency} & \text{7} & \text{6} & \text{9} & \text{13} & \text{20} & \text{5} & \text{4} \\ \hline \end{array}\]
Observe the following data given in the table. (\(K_H\) = Henry's law constant)
| Gas | CO₂ | Ar | HCHO | CH₄ |
|---|---|---|---|---|
| \(K_H\) (k bar at 298 K) | 1.67 | 40.3 | \(1.83 \times 10^{-5}\) | 0.413 |
The correct order of their solubility in water is
For a first order decomposition of a certain reaction, rate constant is given by the equation
\(\log k(s⁻¹) = 7.14 - \frac{1 \times 10^4 K}{T}\). The activation energy of the reaction (in kJ mol⁻¹) is (\(R = 8.3 J K⁻¹ mol⁻¹\))
Note: The provided value for R is 8.3. We will use the more precise value R=8.314 J K⁻¹ mol⁻¹ for accuracy, as is standard.