We are given the following information:
We can calculate the mean \( \bar{x} \) using the formula:
\[ \bar{x} = \frac{\sum_{i=1}^{50} x_i}{50} = \frac{650}{50} = 13 \]
Next, we use the formula for variance:
\[ \text{Variance} = \frac{1}{n} \left( \sum_{i=1}^{n} x_i^2 - \frac{(\sum_{i=1}^{n} x_i)^2}{n} \right) \] Substitute the known values into the formula: \[ \text{Variance} = \frac{1}{50} \left( 10000 - \frac{650^2}{50} \right) \] First, calculate \( \frac{650^2}{50} \): \[ \frac{650^2}{50} = \frac{422500}{50} = 8450 \] Now, substitute this into the variance formula: \[ \text{Variance} = \frac{1}{50} \left( 10000 - 8450 \right) = \frac{1}{50} \times 1550 = 31 \]
Answer: 31
Find the mean of the following distribution:
\[\begin{array}{|c|c|c|c|c|c|c|c|} \hline \textbf{Class-interval} & 11-13 & 13-15 & 15-17 & 17-19 & 19-21 & 21-23 & 23-25 \\ \hline \text{Frequency} & \text{7} & \text{6} & \text{9} & \text{13} & \text{20} & \text{5} & \text{4} \\ \hline \end{array}\]