We are given the following information:
We can calculate the mean \( \bar{x} \) using the formula:
\[ \bar{x} = \frac{\sum_{i=1}^{50} x_i}{50} = \frac{650}{50} = 13 \]
Next, we use the formula for variance:
\[ \text{Variance} = \frac{1}{n} \left( \sum_{i=1}^{n} x_i^2 - \frac{(\sum_{i=1}^{n} x_i)^2}{n} \right) \] Substitute the known values into the formula: \[ \text{Variance} = \frac{1}{50} \left( 10000 - \frac{650^2}{50} \right) \] First, calculate \( \frac{650^2}{50} \): \[ \frac{650^2}{50} = \frac{422500}{50} = 8450 \] Now, substitute this into the variance formula: \[ \text{Variance} = \frac{1}{50} \left( 10000 - 8450 \right) = \frac{1}{50} \times 1550 = 31 \]
Answer: 31
Let the Mean and Variance of five observations $ x_i $, $ i = 1, 2, 3, 4, 5 $ be 5 and 10 respectively. If three observations are $ x_1 = 1, x_2 = 3, x_3 = a $ and $ x_4 = 7, x_5 = b $ with $ a>b $, then the Variance of the observations $ n + x_n $ for $ n = 1, 2, 3, 4, 5 $ is