Question:

The value of \(\begin {vmatrix} \frac{√3}{2}&\frac{1}{2} \\\frac{√3}{2} &\frac{1}{2}\end {vmatrix}\)

Updated On: May 12, 2025
  • 0
  • 1
  • \(\frac{\sqrt{3}}{2}\)
  • \(\frac{1}{2}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

To find the value of the determinant \(\begin{vmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{vmatrix}\), we use the formula for a 2x2 matrix determinant:
\(\text{determinant} = ad - bc\)
For our matrix, let:
  • \(a = \frac{\sqrt{3}}{2}\)
  • \(b = \frac{1}{2}\)
  • \(c = \frac{\sqrt{3}}{2}\)
  • \(d = \frac{1}{2}\)
Substitute these values into the determinant formula:
\(\text{determinant} = \left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right) - \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)\)
Calculating each term:
\(\frac{\sqrt{3}}{2} \times \frac{1}{2} = \frac{\sqrt{3}}{4}\) and \(\frac{1}{2} \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4}\)
Now, evaluate the determinant:
\(\frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} = 0\)
Therefore, the value of the determinant is 0.
Was this answer helpful?
0
0