Question:

The value of the sum $(\,^nC_1)^2+(\,^nC_2)^2+(\,^nC_3)^2+...+(\,^nC_n)^2$ is

Updated On: Jul 7, 2022
  • $(\,^{2n}C_n)^2$
  • $\,^{2n}C_n$
  • $\,^{2n}C_n+1$
  • $\,^{2n}C_n-1$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

We know that $ (1+ x )^{ n }={ }^{ n } C _{0}+{ }^{ n } C _{1} x +{ }^{ n } C _{2} x ^{2}+\cdots+{ }^{ n } C _{ n } x ^{ n } \quad \ldots \ldots \text { (i) } $ and $ (x+1)^{n}={ }^{n} C_{0} x^{n}+{ }^{n} C_{1} x^{n-1}+{ }^{n} C_{2} x^{n-2}+\cdots+{ }^{n} C_{n} $ On multiplying equations (i) and (ii), we get $ \begin{array}{l} (1+x)^{2 n}=\left({ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\cdots+{ }^{n} C_{n} x^{n}\right) \times \\ \left({ }^{n} C_{0} x^{n}+{ }^{n} C_{1} x^{n-1}+{ }^{n} C_{2} x^{n-2}+\cdots+{ }^{n} C_{n}\right) \end{array} $ Coefficient of $x ^{ n }$ in right hand side $=\left({ }^{ n } C _{0}\right)^{2}+\left({ }^{ n } C _{1}\right)^{2}+\cdots+\left({ }^{ n } C _{ n }\right)^{2}$ and $ \begin{array}{l} \text { coefficient of } x ^{ n } \text { in left hand side }={ }^{2 n } C _{ n } \\ \therefore\left({ }^{ n } C _{0}\right)^{2}+\left({ }^{ n } C _{1}\right)^{2}+\cdots+\left({ }^{ n } C _{ n }\right)^{2}=\frac{2 n !}{ n ! n !} \\ \Rightarrow\left({ }^{ n } C _{1}\right)^{2}+\cdots+\left({ }^{ n } C _{ n }\right)^{2}=\frac{(2 n ) !}{ n ! n !}-1={ }^{2 n } C _{ n }-1 \end{array} $
Was this answer helpful?
0
0

Concepts Used:

Binomial Theorem

The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is 

Properties of Binomial Theorem

  • The number of coefficients in the binomial expansion of (x + y)n is equal to (n + 1).
  • There are (n+1) terms in the expansion of (x+y)n.
  • The first and the last terms are xn and yn respectively.
  • From the beginning of the expansion, the powers of x, decrease from n up to 0, and the powers of a, increase from 0 up to n.
  • The binomial coefficients in the expansion are arranged in an array, which is called Pascal's triangle. This pattern developed is summed up by the binomial theorem formula.