The correct answer is (A):
The \( n^\text{th} \) term of the series is: \[ t_n = (4n - 3)(4n - 7) \]
Expanding this: \[ t_n = 16n^2 - 28n - 21 \]
The sum of the first \( n \) terms is: \[ \sum t_n = \sum (16n^2 - 28n - 21) = 16 \sum n^2 - 28 \sum n - 21n \]
Using formulae: \[ \sum n^2 = \frac{n(n+1)(2n+1)}{6}, \quad \sum n = \frac{n(n+1)}{2} \]
Therefore: \[ \sum t_n = 16 \cdot \frac{n(n+1)(2n+1)}{6} - 28 \cdot \frac{n(n+1)}{2} - 21n \]
The series terms are \( 7, 11, 15, \ldots, 95 \), an arithmetic progression with common difference 4.
Number of terms \( n \) is: \[ n = \frac{95 - 7}{4} + 1 = \frac{88}{4} + 1 = 22 + 1 = 23 \]
Now plug in \( n = 23 \):
\[ \sum t_n = 16 \cdot \frac{23 \cdot 24 \cdot 47}{6} - 28 \cdot \frac{23 \cdot 24}{2} - 21 \cdot 23 \]
Compute step-by-step:
Final sum: \[ \sum t_n = 69312 - 7728 - 483 = \boxed{80707} \]