The correct answer is (A):
The \( n^\text{th} \) term of the series is: \[ t_n = (4n - 3)(4n - 7) \]
Expanding this: \[ t_n = 16n^2 - 28n - 21 \]
The sum of the first \( n \) terms is: \[ \sum t_n = \sum (16n^2 - 28n - 21) = 16 \sum n^2 - 28 \sum n - 21n \]
Using formulae: \[ \sum n^2 = \frac{n(n+1)(2n+1)}{6}, \quad \sum n = \frac{n(n+1)}{2} \]
Therefore: \[ \sum t_n = 16 \cdot \frac{n(n+1)(2n+1)}{6} - 28 \cdot \frac{n(n+1)}{2} - 21n \]
The series terms are \( 7, 11, 15, \ldots, 95 \), an arithmetic progression with common difference 4.
Number of terms \( n \) is: \[ n = \frac{95 - 7}{4} + 1 = \frac{88}{4} + 1 = 22 + 1 = 23 \]
Now plug in \( n = 23 \):
\[ \sum t_n = 16 \cdot \frac{23 \cdot 24 \cdot 47}{6} - 28 \cdot \frac{23 \cdot 24}{2} - 21 \cdot 23 \]
Compute step-by-step:
Final sum: \[ \sum t_n = 69312 - 7728 - 483 = \boxed{80707} \]
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: