By Cauchy’s integral formula:
\[
\int_C \frac{f(z)}{(z-a)} \, dz = 2 \pi i \, f(a)
\]
Now within \( |z| = 3 \), only singularity at \( z = 2 \) lies inside.
So,
\[
= 2 \pi i \times \frac{2 e^2}{(2-4)}
\]
\[
= 2 \pi i \times \frac{2 e^2}{-2}
\]
\[
= -2 \pi i e^2
\]